Potentiometric investigation of the stability of palladium(II) complex of pralidoxime chloride in aqueous solution*

K. KARLJIKOVIĆ-RAJIĆ \dagger and B. STANKOVIĆ
Faculty of Pharmacy, Institute of Analytical Chemistry, Belgrade, Yugoslavia

Abstract

The formation of a complex between palladium(II) chloride and pralidoxime chloride (PAM-2Cl) has been studied by means of potentiometric pH measurements. The real stability constant of the complex in aqueous medium of ionic strength $0.3 \mathrm{M}(\mathrm{KCl})$ at $25.0^{\circ} \mathrm{C}$ was $\log K_{\mathrm{s}}=7.29$. This value was close to that ($\log K_{\mathrm{s}}=7.02$) obtained previously by spectrophotometric methods after appropriate correction with respect to the corresponding value of the acidic constant of PAM-2Cl ($\mathrm{p} K_{\mathrm{a}}^{\mathrm{c}}=8.05$), which was also determined under the same experimental conditions.

Keywords: Pralidoxime chloride; palladium(II) complex; acidic constant; stability constant; potentiometric determination.

Introduction

Although hundreds of pyridinium oximes have been tested as antidotes, in combination with atropine, in experimental organophosphorus (nerve gases, pesticides) poisoning [1, 2], only three of these, PAM-2Cl, obidoxime chloride and TMB-4 are used in clinical medicine [3-5].

The values of the acidic constants ($\mathrm{p} K_{\mathrm{a}}$) are of prime importance for the reactivating efficiency of oximes. According to the same authors [5-7], the $\mathrm{p} K_{\mathrm{a}}$ should be such that a sufficient amount of the ionized form of oxime is present at physiological pH . The optimal $\mathrm{p} K_{\mathrm{a}}$ value of pyridinium oximes has been estimated to be about 8, although oxime HI-6 ($\mathrm{p} K_{\mathrm{a}}=7.2$) is an excellent reactivator [8].

Earlier spectrophotometric studies [9] showed that $\mathrm{PAM}-2 \mathrm{Cl}$ in reaction with $\mathrm{Pd}(\mathrm{II})$ forms complex of stoichiometric composition 1:1. The present report concerns the determination of the real stability constant $\left(\log K_{\mathrm{s}}\right)$ of this complex by potentiometric pH measurements during titration with sodium hydroxide.

Experimental

Reagents
PAM-2Cl was of the same origin as that of previous work [9]. All other chemicals were of analytical grade (Merck); boiled double-dis-
tilled water was used to prepare solutions for potentiometric determinations.

Solutions

For the potentiometric determination of \log K_{s}, a standard solution of PAM- $2 \mathrm{Cl}(4 \times$ $10^{-3} \mathrm{M}$) was prepared freshly by dissolving the accurately weighed solid substance in boiled and cooled double-distilled water. Standard palladium(II) chloride solution ($2.0 \times 10^{-2} \mathrm{M}$) was prepared and standardized as described [10]; the ionic strength was adjusted with 2 M potassium chloride. For the titrations, 0.165 or 0.090 M sodium hydroxide (carbonate-free) was used; the concentrations were determined by titrating with a standard solution of potassium hydrogen phthalate.

Apparatus

A PHM-62 Standard pH-meter (Radiometer, Copenhagen) equipped with a combined electrode (GK 2401B) was used (accuracy $\pm 0.01 \mathrm{pH}$ units). The response of the electrode was checked against: hydrogen phthalate, pH 4.01 (Radiometer S 1316); hydrogen phosphate, pH 7.00 (Radiometer S 1326); sodium tetraborate, pH 9.18 (Radiometer S 1336); and hydrochloric acid, pH 1.00 (Merck) standard buffer solutions. The electrode was calibrated in the pH range $2.0-3.5$ using solutions of known concentrations of

[^0]HCl at a constant ionic strength (0.3 M KCl). On the basis of these data the correction factor was calculated for converting the measured $\mathrm{pH}_{\mathrm{GE}}$ values into the concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$ ions in the investigated systems of the same ionic strength $\left(\mathrm{pH}_{\mathrm{GE}}-\mathrm{p} c_{\mathrm{H}}=0.07 ; \mathrm{p}_{\mathrm{H}}=-\right.$ $\log \mathrm{H}_{3} \mathrm{O}^{+}$) [11, 12]. For the potentiometric titrations, a TTT 60 titrator with an autoburette ABU 12 (Radiometer, Copenhagen) was used (accuracy $\pm 0.001 \mathrm{ml}$). An Ultra-Thermostat Medigen (Dresden) was used for maintaining a constant temperature ($25 \pm 0.1^{\circ} \mathrm{C}$) during the titrations. The $\mathrm{p} K_{\mathrm{a}}^{\mathrm{c}}$ and $\log K_{\mathrm{s}}$ values were calculated using an EPSON HX-20.

Potentiometric determination of $p \mathrm{~K}_{a}^{c}$

Quantities of 0.0173 g of PAM-2Cl were transferred into a special double-walled thermostatted vessel; after addition of 3.0 ml of 2 M KCl , the solutions were diluted to 20.00 ml with double-distilled water and titrated with 0.165 M NaOH . Before the start of each titration a stream of nitrogen was passed through the solution and the inert atmosphere was kept constant during the titration. The neutralization region ($a=0.2-$ 0.8) was used for the determination of $\mathrm{p} K_{\mathrm{a}}^{\mathrm{c}}$ as described by Djatlova [13]. The value of $\mathrm{p} K_{\mathrm{w}}^{\mathrm{c}}=13.74(\mu=0.3 \mathrm{M})$ was used.

Potentiometric determination of $\log \mathrm{K}_{s}$

Titrations. PAM-2Cl-ligand (L) was titrated with 0.09 M NaOH first in the presence of a constant $\mathrm{Pd}(\mathrm{II})$ concentration of $5 \times 10^{-4} \mathrm{M}$ $\left(0.50 \mathrm{ml} ; 2 \times 10^{-2} \mathrm{M}\right)$ in molar ratios IL$1 \mathrm{Pd}(\mathrm{II}), 2 \mathrm{~L}-\mathrm{IPd}(\mathrm{II})$ and $4 \mathrm{~L}-\mathrm{IPd}(\mathrm{II})$ using 2.50 , 5.0 and 10.0 ml of PAM-2Cl standard solution, respectively, and then in the absence of $\mathrm{Pd}(\mathrm{II})$. The pH of the solution of the ligand alone was adjusted to that of the mixture with $\mathrm{Pd}(\mathrm{II})$ (3.14) using 0.51 M HCl because of the acidity of $\mathrm{Pd}(\mathrm{II})$ solution itself.

The titrations were carried out at $25 \pm 0.1^{\circ} \mathrm{C}$ at constant ionic strength (0.3 M) obtained by addition of 3.0 ml of 2 M KCl . The solutions were diluted to a total volume $\left(V_{\mathrm{o}}\right)$ of 20.0 ml , with double-distilled water, whether metal was present or not. Before the start of each titration a stream of nitrogen was passed through the solution and the inert atmosphere was kept constant during the titration.

Calculations. The equations of Albert [14] were used with some modifications. The free
ligand concentration [L] was calculated from the equation:

$$
\begin{equation*}
[\mathrm{L}]=\frac{(\mathrm{l}-a) \cdot c_{\mathrm{L}_{\mathrm{corr}}}-c_{\mathrm{H}}+c_{\mathrm{OH}}}{c_{\mathrm{H}} / K_{\mathrm{a}}^{\mathrm{c}}} \tag{1}
\end{equation*}
$$

where a is the degree of titration calculated from $a=V_{\mathrm{NaOH}} \cdot c_{\mathrm{NaOH}} / c_{\mathrm{L}} \cdot V_{\mathrm{oc}} ; c_{\mathrm{L}_{\text {cerr }}}$ is the initial concentration of ligand corrected at each point on the titration curve as $c_{\mathrm{L}_{\text {cerr }}}=c_{\mathrm{L}} \cdot V_{\mathrm{o}} / V_{\text {oc }}$ $+V_{\mathrm{NaOH}} ; K_{\mathrm{a}}^{\mathrm{c}}=$ acidic constant of PAM-2Cl; c_{OH} was omitted from the calculations because $\mathrm{p} c_{\mathrm{H}}$ was in the range 3.61-5.01. The value V_{oc} represents the starting point for the calculations, determined for each pair of titration curves where the difference of $p c_{H}$ between the ligand alone and the complex becomes significant.

The function \bar{n} is the average number of ligands bound to one metal atom and is calculated from [L] using equation (2):

$$
\begin{equation*}
\bar{n}=\left(c_{\mathrm{L}_{\mathrm{com}}}-\alpha[\mathrm{L}]\right) / c_{\mathrm{M}_{\mathrm{cum}}}, \tag{2}
\end{equation*}
$$

in which $\alpha=1+c_{\mathrm{H}^{\prime}} / K_{\mathrm{a}}^{\mathrm{c}} ; c_{\mathrm{M}_{\mathrm{corr}}}$ is the total metal ion concentration initially present in the solution corrected by $c_{\mathrm{M}_{\mathrm{corr}}}=c_{\mathrm{M}} \cdot V_{\mathrm{o}} / V_{\mathrm{oc}}+$ V_{NaOH}.

The value of $\log K_{\mathrm{s}}$ can be calculated using the method of least squares by plotting values of $\bar{n} /(\bar{n}-1)[\mathrm{L}]$ against the corresponding values of $(2-\bar{n})[L] /(\bar{n}-1)$ to yield a straight line of which the intercept is $-K_{\mathrm{s}}$ if a $1: 1$ complex is formed.

The value of the conditional stability constant $\left(\log K_{\mathrm{s}}^{\prime}\right)$ of the PAM-2Cl-Pd(II) complex [9] was corrected with respect to the $\mathrm{p} K_{\mathrm{a}}^{\mathrm{c}}$ of $\mathrm{PAM}-2 \mathrm{Cl}$ and the pc_{H} according to equation (3):

$$
\begin{equation*}
\log K_{\mathrm{s}}=\log K_{\mathrm{s}}^{\prime}+\log c_{\mathrm{H}}-\log K_{\mathrm{a}}^{\mathrm{c}} \tag{3}
\end{equation*}
$$

Results and Discussion

Although the $\mathrm{p} K_{\mathrm{a}}$ value of PAM- 2 Cl could be derived from the literature $[4]\left(8.0\right.$ at $20^{\circ} \mathrm{C}$), it was considered preferable to determine the $\mathrm{p} K_{\mathrm{a}}$ under the same experimental conditions as those to be used in complex formation studies, because this value has a remarkable influence on the free ligand concentration [L]. The concentration acidic constant $\left(\mathrm{p} K_{\mathrm{a}}^{\mathrm{c}}\right)$ of PAM2 Cl at $\mu=0.3 \mathrm{M}(\mathrm{KCl})$ was obtained from 29 equidistant points on the titration curve. PAM-

2 Cl was titrated twice with an initial concentration of $5 \times 10^{-3} \mathrm{M}$. The $\mathrm{p} K_{\mathrm{a}}^{\mathrm{c}}$ calculations were performed in the neutralization region ($a=0.182-0.792$). The mean value of $\mathrm{p} K_{\mathrm{a}}^{\mathrm{c}}$ was 8.05 .

Potentiometric titration with NaOH of the ligand alone and of the mixture with $\mathrm{Pd}(\mathrm{II})$ was performed first in a molar ratio of $1: 1$, because previous spectrophotometric studies [9] showed that a complex of this stoichiometric composition had been formed. Because of the acidity of palladium(II) chloride solution the selected concentration was $5 \times 10^{-4} \mathrm{M}$. Higher concentrations would decrease the pH below 3 where the complex is not formed.

An oxime group is amphiprotic. The oxime nitrogen atom is weakly basic [15, 16] ($\mathrm{p} K$ ($=\mathrm{N}^{\mathrm{N}} \mathrm{HOH}$) $\leqslant 2$) and the hydroxyl group is weakly acidic [17]. This was confirmed by calculating the value of the average number of protons bound per mole of the oxime ($\bar{n}_{\text {tot }}$) according to the formation function method [18], from the titration curve of $\mathrm{PAM}-2 \mathrm{Cl}$ with NaOH obtained from a strongly acidic solution ($\mathrm{pH}=1.78$, adjusted with 0.5073 M HCl). The value of $\bar{n}_{\text {tot }}$ (from 1 to 0) provides
evidence for binding of the free nigroten atom with $\mathrm{Pd}(\mathrm{II})$.

Titration curves for the metal alone, for the complex in different molar ratios with respect of PAM-2CI, and for the ligand alone are presented in Fig. 1. The diagram attached to Fig. 1 shows the dependence on pH of the percentage of mole fraction of each molecular species of PAM-2Cl; it is evident that oxime is present completely in molecular form even at pH 6.45 where the conditional stability constant was obtained [9]. The pH values are calculated according to equation (4):

$$
\begin{equation*}
\mathrm{pH}=\mathrm{p} K_{\mathrm{a}}^{\mathrm{c}}+\log \frac{c_{\mathrm{l}}}{100-c_{\mathrm{I}}} \tag{4}
\end{equation*}
$$

on the basis of $\mathrm{p} K_{\mathrm{a}}^{\mathrm{c}}=8.05$, where c_{I} represents the concentration of the ionized species expressed as a percentage.

From the results of the titrations of the complex with different molar ratios only one complex of composition 1:1 was observed. The value of the average number of ligands bound to one metal atom (\tilde{n}) reaches 1 for values of the degree of titration (a) of $0.95,0.49$ and 0.24

Figure 1
Potentiometric titration curves of $\mathrm{Pd}(\mathrm{II})$ alone (curve 1) $c_{\mathrm{Pd}(\mathrm{II})}=5 \times 10^{-4} \mathrm{M}$; and in the presence of $\mathrm{PAM}-2 \mathrm{Cl}$ in molar ratios of $\mathrm{PAM}-2 \mathrm{CI}-\mathrm{Pd}(\mathrm{II}$) of $1: 1$ (curve 2); $2: 1$ (curve 3); and $4: 1$ (curve 4) with the corresponding curves of ligand-PAM2 Cl alone ($2 \mathrm{a}, 3 \mathrm{a}$ and 4 a). The arrows denote the intervals for calculation. The attached diagram shows the dependence on pH of the percentage mole fraction of each species.
in respect of molar ratios 1PAM-2Cl-1Pd(II), $2 \mathrm{PAM}-2 \mathrm{Cl}-1 \mathrm{Pd}(\mathrm{II})$ and 4PAM-2Cl-1Pd(II), respectively. The confirmatory results were obtained by plotting values of \bar{n} against $\mathrm{p}[\mathrm{L}]$; such curves have been termed "formation curves" by Bjerrum [19] (Fig. 2). They provide evidence as to whether the reaction under consideration is stepwise or not. Since both curves showed an inflection point at a value of \bar{n} of about 1 , it was concluded that only the $1: 1$ complex was formed. Figure 3 represents the formation curves of the $\mathrm{PAM}-2 \mathrm{Cl}-\mathrm{Pd}(\mathrm{II})$ complex for all molar ratios with values \bar{n} up to 1 .

Figure 2
The formation curves of $\mathrm{PAM}-2 \mathrm{Cl}-\mathrm{Pd}(\mathrm{II})$ complex for molar ratios 2PAM-2Cl-1Pd(II) (broken line) and for 4PAM-2Cl-1Pd(II) (solid line).

Figure 3
The formation curves of $\mathrm{PAM}-2 \mathrm{Cl}-\mathrm{Pd}$ (II) complex for molar ratios: $1 \mathrm{PAM}-2 \mathrm{Cl}-1 \mathrm{Pd}(\mathrm{II})$ (curve 1); $2 \mathrm{PAM}-2 \mathrm{Cl}-$ $1 \mathrm{Pd}(\mathrm{II})$ (curve 2) and 4PAM-2CI-1Pd(II) (curve 3).

The values of $\log K_{\mathrm{s}}$ obtained for $1: 1,2: 1$ and $4: 1$ molar ratios of PAM-2Cl-Pd(II) were $7.29,7.31$ and 7.29 , respectively. The summarized results for the titration of $2 \mathrm{PAM}-2 \mathrm{Cl}-$ $1 \mathrm{Pd}(\mathrm{II})$ are shown in Table 1. The value of 7.29 is close to that $\left(\log K_{\mathrm{s}}=7.02\right)$ obtained after correction of $\log K_{\mathrm{s}}^{\prime}=5.35$ (Sommer's method) according to equation (3).

Calculations according to the formation function method [18] for titration of the complex [ratio 1PAM-2Cl-1Pd(II)] show that the acidity of the oxime group increases markedly with co-ordination of the oxime nitrogen atom to $\operatorname{Pd}(\mathrm{II})$, since the value obtained for the $\mathrm{p} K_{\mathrm{t}}^{\mathrm{c}}$

Table 1
Potentiometric determination of the stability constant ${ }^{*}$ of $\mathrm{PAM}-2 \mathrm{Cl}-\mathrm{Pd}(\mathrm{II})$ complex for the molar ratio $2 \mathrm{PAM}-2 \mathrm{Cl}-$ $\left.1 \mathrm{Pd}(\mathrm{II}) ; c_{\mathrm{PAM}-2 \mathrm{CI}}=1 \times 10^{-3} \mathrm{M} ; c_{\mathrm{Pd}(\mathrm{II}}\right)=5 \times 10^{-4} \mathrm{M} ; V_{0}=20 \mathrm{ml} ; V_{\mathrm{oc}}=20.14 \mathrm{ml} ; \mathrm{p} K_{\mathrm{a}}^{\mathrm{e}}=8.05$; temperature $=$ $25 \pm 0.1^{\circ} \mathrm{C} ; \mu=0.30 \mathrm{M}(\mathrm{KCl})$

$\begin{aligned} & 0.09 \mathrm{M} \mathrm{NaOH}_{(\mathrm{ml})} \\ & \end{aligned}$	Pc_{H}	$\mathrm{p}[\mathrm{L}]$	[L]	\bar{n}	$\frac{\bar{n}}{(\bar{n}-1)[L]}$	$\frac{(2-\bar{n})[\mathrm{L}]}{(\bar{n}-1)}$	a
0.010	3.74	7.425	3.753×10^{-8}	0.456	-2.233×10^{7}	-1.065×10^{-7}	0.045
0.020	3.81	7.366	4.307×10^{-8}	0.491	-2.238×10^{7}	-1.276×10^{-7}	0.089
0.030	3.89	7.297	5.049×10^{-8}	0.527	-2.214×10^{7}	-1.574×10^{-7}	0.134
0.040	3.98	7.219	6.036×10^{-8}	0.568	-2.184×10^{7}	-2.003×10^{-7}	0.178
0.045	4.02	7.187	6.486×10^{-8}	0.595	-2.259×10^{7}	-2.253×10^{-7}	0.201
0.050	4.07	7.145	7.164×10^{-8}	0.618	-2.264×10^{7}	-2.595×10^{7}	0.223
0.055	4.13	7.092	8.089×10^{8}	0.641	-2.208×10^{7}	-3.063×10^{-7}	0.246
0.060	4.18	7.051	8.884×10^{-8}	0.669	-2.280×10^{7}	-3.576×10^{-7}	0.268
0.065	4.23	7.012	9.739×10^{-2}	0.699	-2.392×10^{7}	-4.217×10^{-7}	0.291
0.070	4.29	6.962	1.093×10^{-7}	0.729	-2.463×10^{7}	-5.126×10^{-7}	0.313
0.075	4.35	6.913	1.223×10^{-7}	0.760	-2.594×10^{7}	-6.328×10^{-7}	0.335
0.080	4.42	6.854	1.401×10^{-7}	0.792	-2.712×10^{7}	-8.122×10^{-7}	0.357
0.085	4.48	6.806	1.562×10^{-7}	0.826	-3.046×10^{7}	-1.055×10^{-6}	0.379
0.090	4.55	6.749	1.779×10^{-7}	0.861	-3.480×10^{7}	-1.458×10^{6}	0.402

[^1]is 5.08 ± 0.6. This is in accordance with literature data obtained for co-ordination of some other oximes with different metal ions [20, 21].

The results show that the potentiometric method enables an accurate and reproducible $\log K_{\mathrm{s}}$ value of $\mathrm{PAM}-\mathrm{Cl}-\mathrm{Pd}(\mathrm{II})$ complex to be determined, and also confirm the molar ratio of the complex obtained by spectrophotometric methods.

References

[1] M. Majewski and B. Serafin, Wiad. Chem. 33, 311329 (1979).
[2] M. Majewski and B. Serafin, Wiad. Chem. 33, 405-426 (1979).
[3] Z. Binenfeld and V. Vojvodić, Forsvars Medicin 101, 114-118 (1974).
[4] E.G.C. Clarke, Isolation and Identification of Drugs (2nd edn), Vol. 2, pp. 829 and 915. Pharmaceutical Press, London (1986).
[5] N. Engelhard and W.D. Erdmann, Arzneim. Forsch. 14, 870-875 (1964).
[6] J. Ashani and S. Cohen, J. Med. Chem. 13, 471-474 (1970).
[7] M. Grifantini, S. Martellis and M.L. Stein, J. Pharm. Sci. 58, 460-464 (1969).
[8] M. Maksimović, Arh. hig. rada toksikol. 30, 227-239 (1979).
[9] K. Karljiković-Rajić, B. Stanković, A. Granov and Z. Binenfeld, J. Pharm. Biomed. Anal. 6, 773-780 (1988).
[10] K. Karijiković-Rajić, B. Stanković and Z. Binenfeld, J. Pharm. Biomed. Anal. 5, 141-149 (1987).
[11] D. Rosenthal and J.S. Dwyer, Anal. Chem. 35, 161-166 (1963).
[12] R.G. Bates, Determination of $p H$. Wiley, New York (1964). (Russian translation, Khiwiya, Leningrad, 1968, p. 38.)
[13] N.M. Djatlova, V.J. Temkina and I.D. Kolpakova, Kompleksoni ("Himia") p. 40. Moscow (1970).
[14] A. Albert and E.P. Serjeant, The Determination of Ionization Constants, A Laboratory Manual, p. 176. Chapman and Hall, London (1984).
[15] J.W. Fraser, G.R. Hedwing, M.M. Morgan and H.K.J. Powell, Aust. J. Chem. 23, 1847-1852 (1970).
[16] R.G. Charles and H. Freiser, Analytica Chim. Acta 11, 101-110 (1954).
[17] L.G. Sillén and A.E. Martell, Stability Constants Chem. Soc. spec. Publs No. 17, Chemical Society, London (1964).
[18] T.J. Janjić, L.B. Pfendt and M.B. Celap, J. Inorg. Nucl. Chem. 41, 1019-1022 (1979).
[19] J. Bjerrum, Metal Ammine Formation in Aqueous Solution. Haase and Son, Copenhagen (1941).
[20] J.W. Fraser, G.R. Hedwing, H.K.J. Powell and W.T. Robinson, Aust. J. Chem. 25, 747-759 (1972).
[21] G.I.H. Hanania and D.H. Irvine, J. Chem. Soc. July, 2745-2749 (1962).
[Received for review 5 April 1990;
revised manuscript received 7 June 1990]

[^0]: *Presented at the "Second International Symposium on Pharmaceutical and Biomedical Analysis", April 1990, York, UK.
 \dagger Author to whom correspondence should be addressed.

[^1]: ${ }^{*} N=14 ; \bar{n}(0.456-0.861) ;$ intercept $=-2.020 \times 10^{7} ; r=0.98 ; \log K_{n}=7.31$.

